Optimization of enterprise production programs taken into account of uncertainty

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The branch and bound method used to select the optimal production program is considered, based on the calculation of the upper, lower and current upper estimates when analyzing various options for production programs. An upper bound for the number of feasible solutions to the problem under consideration is given. Models for choosing an optimal production program in conditions of production expansion are considered, as well as issues of analyzing the stability of these programs when changing the initial data of the model and when changing the criterion for the optimality of the model. The use of models for selecting the optimal production program within the framework of project management at enterprises will ensure increased efficiency of activities, including at the stages of planning and implementation of projects, classification and selection of a method for implementing projects.

Texto integral

Acesso é fechado

Sobre autores

I. Borisov

FGOBU VO "Financial University under the Government of the Russian Federation"

Autor responsável pela correspondência
Email: ilyaborisov2015@yandex.ru
Rússia, Moscow

O. Kosorukov

Moscow State University named after. M. V. Lomonosov; Russian Academy of National Economy and Public Administration under the President of the Russian Federation; Russian Economic University named after G. V. Plekhanov

Email: kosorukovoa@mail.ru
Rússia, Moscow; Moscow; Moscow

A. Mishchenko

FGOBU VO "Financial University under the Government of the Russian Federation"

Email: alnex4957@rambler.ru
Rússia, Moscow

V. Tsurkov

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences

Email: v.tsurkov@mail.ru
Rússia, Moscow

Bibliografia

  1. Brucker P., Jurisch B., Jurisch M. Open Shop Problems with Unit Time Operations, ZOR // Methods and Models of Operations Research. 1993. V. 37. Р. 59–73.
  2. Coffman E.G., Nozari A., Yannakakis M. Optimal Scheduling of Products with Two Subassemblies on a Single Machine // Oper. Res. 1989. V. 37. Р. 426–436.
  3. Данилин В.И. Финансовое и операционное планирование в корпорации РАНХиГС. М., 2014.
  4. Мищенко А.В., Халиков М.А. Распределение ограниченных ресурсов в задаче оптимизации производственной деятельности предприятия // Изв. АН СССР. Техн. кибернетика. 1991. № 6.
  5. Мищенко Л.В., Пилюгина Л.В. Динамические модели управления научно-производственными системами // Вестн. МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2019. № 2.
  6. Мищенко А.В., Сушков Б.Г. Задача оптимального распределения ресурсов на сетевой модели при линейных ограничениях на время выполнения работ // ЖВМ и МФ. 1980. Т. 10. № 5.
  7. Мищенко А.В., Когаловский В.М. Проблемы устойчивости задач производственного планирования в машиностроении // Экономика и мат. методы. 1992. № 3.
  8. Мищенко А.В. Устойчивость решений в задаче перераспределения транспортных средств в случае экстренного закрытия движения на участке метрополитена // Изв. АН СССР. Техн. кибернетика. 1990. № 3.
  9. Мищенко А.В. Задача распределения транспортных средств по автобусным маршрутам при неточно заданной матрице корреспонденций пассажиропотока // Изв. АН СССР. Техн. кибернетика. 1992. № 2.
  10. Катюхина О.А., Мищенко А.В. Динамические модели управления транспортными ресурсами на примере организации работы автобусного парка // Аудит и финансовый анализ. 2016. № 2. C. 156–167.
  11. Косоруков Е.О., Фуругян М.Г. Некоторые алгоритмы распределения ресурсов в многопроцессорных системах // Вестн. МГУ. Сер. 15. Вычисл. математика и кибернетика. 2009. № 4. C. 34–37.
  12. Фуругян М.Г. Планирование вычислений в многопроцессорных АСУ реального времени с дополнительным ресурсом // АиТ. 2015. № 3.
  13. Косоруков Е.О., Фуругян М. Г. Алгоритмы распределения ресурсов в многопроцессорных системах с нефиксированными параметрами // Некоторые алгоритмы планирования вычислений и организации контроля в системах реального времени. М.: ВЦ РАН, 2011. С. 40–51.
  14. Mironov A.A., Tsurkov V.I. Transport-type Problems with a Criterion // AиT. 1995. №12. C. 109–118.
  15. Миронов А.А., Цурков В.И. Наследственно минимаксные матрицы в моделях транспортного типа / / Изв. РАН. ТиСУ. 1998. № 6. С. 104–121.
  16. Mironov A.A., Levkina TA., Tsurkov V.1. Minimax Estimations of Expectates of Are Weights in Integer Networks with Fixed Node Degrees // Applied and Computational Mathematics. 2009. V. 8. № 2. P. 216–226.
  17. Mironov A.A., Tsurkov V.I. Class of Distribution Problems with Minimax Criterion // Doklady Akademii Nauk. 1994. V. 336. № 1. P. 35–38.
  18. Tizik A.P., Tsurkov V.I. Iterative Functional Modification Method for Solving a Transportation Problem // Automation and Remote Control. 2012. V. 73. № 1. P. 134–143.
  19. Mironov A.A., Tsurkov V.I. Hereditarily Minimax Matrices in Models of Transportation Type // J. Computer and Systems Sciences International. 1998. V. 37. № 6. P. 927–944.
  20. Mironov A.A., Tsurkov V.I. Minimax in Transportation Models with Integral Constraints. I // J. Computer and Systems Sciences International. 2003. V. 42. № 4. P. 562–574.
  21. Борисов И.А. Методика сравнительного анализа и оптимального выбора варианта управления проектами // Альманах «Крым». 2023. № 38–4.
  22. Борисов И.А. Кластеризация проектов в целях повышения эффективности процессов проектного управления в ФНС России // Экономика и управление: проблемы, решения. 2023. № 8. Т. 3. С. 153–160.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Formula 5.9

Baixar (12KB)
3. Formula 5.10

Baixar (13KB)
4. Fig. 1. No transition to a new production program

Baixar (47KB)
5. Fig. 2. Several transitions from the optimal production program xl to the optimal production program xk and back

Baixar (57KB)
6. Fig. 3. Graph of the location of λ transitions

Baixar (31KB)
7. Fig. 4. Several transition points from one optimal production program to another under conditions of production expansion

Baixar (70KB)
8. Fig. 5. Stability regions for solutions of the problem

Baixar (91KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».