Operational control of an unmanned aerial vehicle helicopter type to ensure emergency safe landing on an unequipped pad

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of providing an emergency landing of an unmanned aerial vehicle (UAV) helicopter type flying in a certain area of the target application is considered. The two-stage algorithm for finding an unprepared landing pad taking into account a set of requirements is proposed. At the first stage, using a digital elevation map placed on an UAV helicopter type board a route for overflying unprepared landing pads in terms of surface topography is calculated. A route formation is achieved by sequentially solving static optimization problems in order to minimize the average losses that occur when an UAV helicopter type flying from one an unprepared landing pad to another. At the second stage, which is implemented directly during an UAV’s helicopter type movement along the calculated route, the final choose of an unprepared landing pad is made based on the processing of ground penetrating radar data. A neural network classifier based on a two-layer perceptron is used to assess the suitability of an unprepared landing pad to the soil density requirement. An example that illustrates the operation of the proposed algorithm both under the conditions of a computational experiment and during a series of flight experiments is considered.

Sobre autores

V. Evdokimenkov

Moscow Aviation Institute (National Research University)

Autor responsável pela correspondência
Email: pavel-ermakov-1998@mail.ru
Rússia, Moscow

P. Ermakov

Moscow Aviation Institute (National Research University)

Email: pavel-ermakov-1998@mail.ru
Rússia, Moscow

A. Gogolev

Moscow Aviation Institute (National Research University)

Email: pavel-ermakov-1998@mail.ru
Rússia, Moscow

Bibliografia

  1. Цуканов И.Р., Азман А.В. Решаемые проблемы, преимущества и перспективы развития беспилотных вертолетов // Изв. ТулГУ. Технические науки. 2022. Вып. 9.
  2. Линник Ю.В. Метод наименьших квадратов и основы математико-статистической теории обработки наблюдений. М.: Физматгиз, 1962. 352 с.
  3. Андреев М.А., Миллер А.Б., Миллер Б.М., Степанян К.В. Планирование траектории беспилотного летательного аппарата в сложных условиях при наличии угроз // Изв. РАН. ТиСУ. 2012. № 2. С.166–176.
  4. Гончаренко В.И., Желтов С.Ю., Князь В.А., Лебедев Г.Н., Михайлин Д.А., Царева О.Ю. Интеллектуальная система планирования групповых действий беспилотных летательных аппаратов при наблюдении наземных мобильных объектов на заданной территории // Изв. РАН. ТиСУ. 2021. № 3. С. 39–56.
  5. Себряков Г.Г., Красильщиков М.Н., Евдокименков В.Н. Алгоритмическое и программно-математическое обеспечение предполетного планирования групповых действий беспилотных летательных аппаратов // Фундаментальные проблемы группового взаимодействия роботов: материалы отчетного мероприятия РФФИ по конкурсу “офи-м” (тема 604) в рамках международной научно-практической конф. Волгоград, 2018. С. 30–32.
  6. Evdokimenkov V.N., Krasilshchikov M.N., Kozorez D.A. Development of Pre-flight Planning Algorithms for the Functional-program Prototype of a Distributed Intellectual Control System of Unmanned Flying Vehicle Groups // INCAS Bulletin. 2019. V. 11. № 1. P. 75–88.
  7. Rafiqul A., Mesbah A. Ground Penetrating Radar for Measuring Thickness of an Unbound Layer of a Pavement // Advances in Intelligent Systems and Computing. 2018. V. 598. P. 160–167.
  8. Leucci G. Ground Penetrating Radar: The Electromagnetic Signal Attenuation and Maximum Penetration Depth // Scholarly Research Exchange. 2008. V. 2008. https://doi.org/10.38114/2008/926091
  9. Booth A.D, Koylass T.M. Drone-mounted Ground-penetating Radar Surveying: Flight-Height Considerations for Diffraction-based Velocity Analysis // GEOPHYSICS. 2021. V. 87. № 4. https://doi.org/10.1190/geo2021-0602.1 Zakriya M., Elfadel I., Rasras M. Monolitic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers // Micromachines. 2018. V. 9. № 11. https://doi.org/0.3390/mi9110602
  10. Quinchia A., Falco G., Faletti E., Dovis F. A Comparison Between Different Error Modelling of MEMS Applied to GPS / INS Integrate Systems // Sensors (Basel). 2013. V. 13. №. 3. P. 9549–0588. https://doi.org/10.3390/s130809549
  11. Liu Hong Dan, Shu Xiong Ying, Li Xi Sheng. Application Of Strongly Tracking Kalman Filter In MEMS Gyroscopes Bias Compensation // 6th Intern. Conf. on Advanced Materials and Computer Science. ISAMCS, Rome, 2017. https://doi.org/10.23977/icamcs.2017.1004
  12. Parra-Tsunekawa I., Ruiz-del-Solar J., Vallejos P. A Kalman-filtering-based Approach for Improving Terrain Mapping in off-road Autonomous Vehicles // J. Intelligent & Robotic Systems. 2014. V. 78. P. 577–591. https://doi.org/10.1007/s10846-014-0087-9
  13. Rullán-Lara J., Salazar S., Lozano R. Real-time Localization of an UAV Using Kalman Filter and a Wireless Sensor Network // J. Intelligent & Robotic Systems. 2012. V. 65. P. 283–293. https://doi.org/10.1007/s10846-011-959908
  14. Kim K., Lee L., Park C. Adaptive Two-stage Extanded Kalman Filter for a Fault-tolerant INS-GPS Loosely Coupled Systems // IEEE Translations on Aerospace and Electronic Systems. 2009. V. 45. № 1. P. 125–137. https://doi.org/10.1109/TAES.2009.4805268
  15. Веремеенко К.К., Желтов С.Ю., Ким Н.В., Себряков Г.Г , Красильщиков М.Н.. Современные информационные технологии в задачах навигации и наведения беспилотных маневренных летательных аппаратов. М.: Физматлит, 2009. 556 с.
  16. Dah-Jing Jwo, Chung F., Tsu-Pin Weng. Adaptive Kalman Filter for Navigation Sensor Fusion, Sensor Fusion and Its Applications, Ciza Thomas (Ed.), ISBN: 978-953-307-101-5, InTech. 2010. P. 488. https://doi.org/10.5772/9957
  17. Shuttle Radar Topography Mission. URL: https://www2.jpl.nasa.gov/srtm/.
  18. OpenStreetMap. URL: https://www.openstreetmap.org .
  19. Гринев А.Ю. Вопросы подповерхностной радиолокации. М.: Радиотехника, 2005. 416 c.
  20. Изюмов С.В., Дручинин C.В., Вознесенский А.С. Теория и методы георадиолокации: Учебное пособие. М.: Горная книга, Изд. Московского гос. горного ун-та, 2008. 196 с.
  21. Сухобок Ю.А. Совершенствование методики георадарного обследования грунтовых объектов транспортной инфраструктуры: дис... канд. техн. наук: 05.23.11. Хабаровск, 2014. 165 c.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».