Токи утечки в композитной пленке BiFeO3/ZnO на сапфире
- Авторы: Садыков С.А.1,2, Гаджиев Г.М.1, Каллаев С.Н.1, Эфендиева Т.Н.1, Алиханов Н.М.1,2, Павленко А.В.3
-
Учреждения:
- Институт физики им. Х. И. Амирханова ДФИЦ Российской академии наук
- Дагестанский государственный университет
- Федеральный исследовательский центр Южный научный центр Российской академии наук
- Выпуск: Том 61, № 3–4 (2025)
- Страницы: 149-159
- Раздел: Статьи
- URL: https://ogarev-online.ru/0002-337X/article/view/307440
- DOI: https://doi.org/10.31857/S0002337X25030041
- EDN: https://elibrary.ru/kgoovv
- ID: 307440
Цитировать
Аннотация
Методом магнетронного ВЧ-распыления синтезирована тонкая пленка BiFeO3 с буферным слоем ZnO на подложке лейкосапфира Al2O3 (C-plane). Исследованы структура и механизмы проводимости в тонкой пленке на основе вольтамперных характеристик и зависимостей тока утечки от времени воздействия постоянного напряжения. Показано, что в формировании токов утечки в пленке участвует более одного механизма проводимости. В области слабого электрического поля токи утечки контролируются омической проводимостью, при более сильном приложенном электрическом поле – эмиссией Шоттки или Пула–Френкеля.
Ключевые слова
Об авторах
С. А. Садыков
Институт физики им. Х. И. Амирханова ДФИЦ Российской академии наук; Дагестанский государственный университет
Email: kallaev-s@rambler.ru
ул. М. Ярагского, 94, Махачкала, 367015 Россия; ул. М. Гаджиева, 43а, Махачкала, 367000 Россия
Г. М. Гаджиев
Институт физики им. Х. И. Амирханова ДФИЦ Российской академии наук
Email: kallaev-s@rambler.ru
ул. М. Ярагского, 94, Махачкала, 367015 Россия
С. Н. Каллаев
Институт физики им. Х. И. Амирханова ДФИЦ Российской академии наук
Email: kallaev-s@rambler.ru
ул. М. Ярагского, 94, Махачкала, 367015 Россия
Т. Н. Эфендиева
Институт физики им. Х. И. Амирханова ДФИЦ Российской академии наук
Email: kallaev-s@rambler.ru
ул. М. Ярагского, 94, Махачкала, 367015 Россия
Н. М. Р. Алиханов
Институт физики им. Х. И. Амирханова ДФИЦ Российской академии наук; Дагестанский государственный университет
Email: kallaev-s@rambler.ru
ул. М. Ярагского, 94, Махачкала, 367015 Россия; ул. М. Гаджиева, 43а, Махачкала, 367000 Россия
А. В. Павленко
Федеральный исследовательский центр Южный научный центр Российской академии наук
Автор, ответственный за переписку.
Email: kallaev-s@rambler.ru
пр. Чехова, 41, Ростов-на-Дону, 344006 Россия
Список литературы
- Wang J., Neaton J.B., Zheng H., Nagarajan V., Ogale S.B., Liu B., Viehland D., Vaithyanathan V., Schlom D.G., Waghmare U.V., Spaldin N.A., Rabe K.M., Wuttig M., Ramesh R. Epitaxial BiFeO3 multiferroic thin film heterostructures // Science. 2003. V. 299. № 5613. P. 1719–1722. https://doi.org/10.1126/science.1080615
- Yakout S.M. Spintronics and innovative memory devices: a review on advances in magnetoelectric BiFeO3 // J. Supercond. Novel Magn. 2021. V. 34. № 2. P. 317–338. https://doi.org/10.1007/s10948-020-05764-z
- Spaldin N.A., Ramesh R. Advances in magnetoelectric multiferroics // Nat. Mater. 2019. V. 18. № 3. P. 203–212. https://doi.org/10.1038/s41563-018-0275-2
- Babalola A.V., Oluwasusi V., Owoeye V.A. et al. Effect of tin concentrations on the elemental and optical properties of zinc oxide thin films // Heliyon. 2024. V. 10. № 1. Р. e23190. https://doi.org/10.1016/j.heliyon.2023.e23190
- Dong W., Guo Y., Guo B., Liu H., Li H., Liu H. Photovoltaic properties of BiFeO3 thin film capacitors by using Al-doped zinc oxide as top electrode // Mater. Lett. 2013. V. 91. P. 359–361. https://doi.org/10.1016/j.matlet.2012.10.031
- Rajalakshmi R., Kambhala N., Angappane S. Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer // Mater. Sci. Eng., B. 2012. V. 177. № 11. P. 908–912. https://doi.org/10.1016/j.mseb.2012.04.014
- Wu J., Wang J. Diodelike and resistive hysteresis behavior of heterolayered BiFeO3/ZnO ferroelectric thin films // J. Appl. Phys. 2010. V. 108. № 9. P. 094107. https://doi.org/10.1063/1.3500498
- Wu J., Lou X., Wang Y., Wang J. Resistive hysteresis and diodelike behavior of BiFeO3/ZnO heterostructure // Electrochem. Solid-State Lett. 2010. V. 13. № 2. Р. G9–G12. https://doi.org/10.1149/1.3264093
- You T., Du N., Slesazeck S., Mikolajick T., Li G., Bürger D. et al. Bipolar electric-field enhanced trapping and detrapping of mobile donors in BiFeO3 memristors // ACS Appl. Mater. Interfaces. 2014. V. 6. P. 19758–19765. https://doi.org/10.1021/am504871g
- Guo Y., Guo B., Dong W., Li H., Liu H. Evidence for oxygen vacancy or ferroelectric polarization induced switchable diode and photovoltaic effects in BiFeO3 based thin films // Nanotechnology. 2013. V. 24. P. 275201. https://doi.org/10.1088/0957-4484/24/27/ 275201
- Yin K., Li M., Liu Y., He C., Zhuge F., Chen B., Lu W., Pan X., Li R.-W. Resistance switching in polycrystalline BiFeO3 thin films. // Appl. Phys. Lett. 2010. V. 97. P. 042101. https://doi.org/10.1063/1.3467838
- Shen W., Bell A., Karim, S., Reaney I. M. Local resistive switching of Nd-doped BiFeO3 thin films // Appl. Phys. Lett. 2012. V. 100. P. 133505. https://doi.org/10.1063/1.3701270
- Wu L., Jiang C., Xue D. Resistive switching in doped BiFeO3 films // J. Appl. Phys. 2014. V. 115. P. 17D716. https://doi.org/10.1063/1.4865217
- Садыков С.А., Каллаев С.Н., Эмиров Р.М., Алиханов Н.М.-Р. Электрические свойства керамики BiFeO3, легированной Sm // Физика твердого тела. 2023. Т. 65. № 10. С. 1727–1737. https://doi.org/ 10.61011/FTT.2023.10.56320.149.
- Auromun K., Choudhary R. N. P. Structural, dielectric and electrical behavior of Bi0.85Tm0.15FeO3 ceramic // Ceram. Int. 2019. V. 45. № 16. P. 20762–20773. https://doi.org/10.1016/j.ceramint.2019.07.062
- Thansanga L., Shukla A., Kumar N., Choudhary R.N.P. Structural, dielectric, impedance and ferroelectric properties of lead-free Bi(Fe0.85Dy0.15)O3 ceramic // J. Mater. Sci.: Mater. Electron. 2021. V. 32. № 16. P. 21337–21349. https://doi.org/10.1007/s10854-021-06636-5
- Mumtaz F., Khan M.H., Jaffari G.H. Correlation between the composition, phase, band structure, ferroelectric and leakage responses of Bi1−xBaxFe1−yTiyO3 thin films // Thin Solid Films. 2022. V. 758. P. 139448. https://doi.org/10.1016/j.tsf.2022.139448
- Pabst G.W., Martin L.W., Chu Y.H., Ramesh R. Leakage mechanisms in BiFeO3 thin films // Appl. Phys. Lett. 2007. V. 90. № 7. https://doi.org/10.1063/1.2535663
- Makhdoom A.R., Akhtar M.J., Rafiq M.A., Hassan M.M. Investigation of transport behavior in Ba-doped BiFeO3 // Ceram. Int. 2012. V. 38. № 5. P. 3829–3834. https://doi.org/10.1016/j.ceramint.2012.01.032
- Подгорный Ю.В., Воротилов К.А., Сигов А.С. Токи утечки в тонких сегнетоэлектрических пленках // Физика твердого тела. 2012. Т. 54. № 5. С. 859–862.
- Гаджиев Г.М., Рамазанов Ш.М., Абакарова Н.С., Эфендиева Т.Н. Влияние внешнего поля и температуры на временную эволюцию тока утечки в пленочной структуре BiFeO3/TiO2(Nt)Ti // Физика твердого тела. 2024. Т. 66. № 2. С. 259–265. https://doi.org/10.61011/FTT.2024.02.57249.227
- Fukumura H., Harima H., Kisoda K., Tamada M., Noguchi Y., Miyayama M. Raman scattering study of multiferroic BiFeO3 single crystal // J. Magn. Magn. Mater. 2007. 310. P. 367–369. https://doi.org/10.1016/J.JMMM.2006.10.282
- Bielecki J., Svedlindh P., Tibebu D.T., Cai S., Eriksson S.G., Börjesson L., Knee C.S. Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: insights from Raman spectroscopy // Phys. Rev. B: Condens. Matter Mater. Phys. 2012. V. 86. P. 184422. https://doi.org/10.1103/PHYSREVB.86.184422
- Iliev M.N., Litvinchuk A.P., Hadjiev V.G., Gospodinov M.M., Skumryev V., Ressouche E. Phonon and magnon scattering of antiferromagnetic Bi2Fe4O9 // Phys. Rev. B: Condens. Matter. Mater. Phys. 2010. V. 81. P. 024302. https://doi.org/10.1103/PHYSREVB.81.024302
- Alikhanov N.M.R., Rabadanov M.K., Orud- zhev F.F., Gadzhimagomedov S.K., Emirov R.M., Sadykov S.A., Kallaev S.N., Ramazanov S.M., Abdulvakhidov K.G., Sobola D. Size-dependent structural parameters, optical, and magnetic properties of facile synthesized pure-phase BiFeO3 // J. Mater. Sci.: Mater. Electron. 2021. V. 32. Р. 13323–13335. https://doi.org/10.1007/S10854-021-05911-9
- Friedrich A., Biehler J., Morgenroth W., Wiehl L., Winkler B., Hanfland M., Tolkiehn M., Burianek M., Mühlberg M. High-pressure phase transition of Bi2Fe4O9 // J. Phys.: Condens. Matter. 2012. V. 24. P. 145401. https://doi.org/10.1088/0953-8984/24/14/145401
- Chen H., Tsaur S., Lee J.Y. Leakage current characteristics of lead-zirconate-titanate thin film capacitors for memory device applications // Jpn. J. Appl. Phys. 1998. V. 37. № 7R. P. 4056. https://doi.org/10.1143/JJAP.37.4056
- Liu J.P., Lv Z.L., Hou Y.X., Zhang L.P., Cao J.P., Wang H.W., Zhao W.B., Zhang C., Bai Y., Meng K.K., Xu X.G., Miao J. Substantial reduction of leakage currents in La/Er/Zn/Ti multielement-doped BiFeO3 multiferroic thin films // Ceram. Int. 2022. V. 48. № 12. P. 17328–17334. https://doi.org/10.1016/j.ceramint.2022.02.295
- Удод Л.В., Аплеснин С.С., Ситников М.Н., Романова О.Б. Исследование магнитоэлектрического эффекта и термоэдс в композитном железозамещенном пиростаннате висмута Bi2(Sn0.7Fe0.3)2O7/Bi2Fe4O9 // Физика твердого тела. 2023. Т. 65. № 8. С. 1361–1367. https://doi.org/10.21883/FTT.2023.08.56154.83
- Yang T., Wei J., Guo Y., Lv Z., Xu Z., Cheng Z. Manipulation of oxygen vacancy for high photovoltaic output in bismuth ferrite films // ACS Appl. Mater. Interfaces. 2019. V. 11. № 26. P. 23372–23381. https://doi.org/10.1021/acsami.9b06704
- Yan F., Miao S., Sterianou I., Reaney I.M., Lai M.O., Lu L., Song W.D. Multiferroic properties and temperature-dependent leakage mechanism of Sc-substituted bismuth ferrite–lead titanate thin films // Scr. Mater. 2011. V. 64. № 5. P. 458–461. https://doi.org/10.1016/j.scriptamat.2010.11.015
- Орешкин П.Т. Физика полупроводников и диэлектриков. М.: Высш. шк., 1977. С. 276, 309.
Дополнительные файлы
