Luminescence Properties of Tb3+- and Eu3+-Doped Lanthanum Magnesium Pentaborates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we report the conditions and results of the synthesis of solid solutions and flux growth of single crystals with the general formula La1 − x – yTbxEuyMgB5O10 from a K2Mo3O10-based high-temperature solution. The structural properties, composition, thermal characteristics, Tb3+ and Eu3+ luminescence spectra, and excitation spectra of the solid solutions have been studied in the ranges 0.2 < x < 0.7 and 0.1 < y < 0.6. We have calculated CIE luminescence spectra of the single crystals and fabricated operating prototype emitters using them.

About the authors

D. D. Mitina

Faculty of Geology, Moscow State University

Email: varya-mitya@mail.ru
119991, Moscow, Russia

V. V. Maltsev

Geological Faculty, Lomonosov Moscow State University

Email: logor48@mail.ru
119991, Moscow, Russia

D. V. Deyneko

Faculty of Chemistry, Moscow State University

Email: varya-mitya@mail.ru
119991, Moscow, Russia

E. A. Volkova

Faculty of Geology, Moscow State University

Email: varya-mitya@mail.ru
119991, Moscow, Russia

E. V. Koporulina

Faculty of Geology, Moscow State University; Mel’nikov Institute of Comprehensive Exploitation of Mineral Resources, Russian Academy of Sciences

Email: varya-mitya@mail.ru
119991, Moscow, Russia; 111020, Moscow, Russia

N. N. Kuzmin

Faculty of Geology, Moscow State University; Institute of Spectroscopy, Russian Academy of Sciences; Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology

Email: varya-mitya@mail.ru
119991, Moscow, Russia; 108840, Troitsk, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

V. L. Kosorukov

Faculty of Geology, Moscow State University

Email: varya-mitya@mail.ru
119991, Moscow, Russia

A. I. Jiliaeva

Faculty of Geology, Moscow State University

Email: varya-mitya@mail.ru
119991, Moscow, Russia

D. A. Naprasnikov

Faculty of Geology, Moscow State University

Author for correspondence.
Email: varya-mitya@mail.ru
119991, Moscow, Russia

References

  1. Mutailipu M., Poeppelmeier K.R., Pan S. Borates: A Rich Source for Optical Materials // Chem. Rev. 2021. V. 121. № 3. P. 1130–1202. https://doi.org/10.1021/acs.chemrev.0c00796
  2. Chinn S.R., Hong H.P. CW Laser Action in Acentric NdAl3(BO3)4 and KNdP4O12 // Opt. Commun. 1975. V. 15. № 3. P. 345–350. https://doi.org/10.1016/0030-4018(75)90242-4
  3. Aka G., Brenier A. Self-Frequency Conversion in Nonlinear Laser Crystals // Opt. Mater. 2003. V. 22. № 2. P. 89–94. https://doi.org/10.1016/s0925-3467(02)00351-8
  4. Wei Z., Sun L., Liao C., Yin J., Jiang X., Yan C., Lü S. Size-Dependent Chromaticity in YBO3:Eu Nanocrystals: Correlation with Microstructure and Site Symmetry // J. Phys. Chem. B. 2002. V. 106. № 41. P. 10610–10617. https://doi.org/10.1021/jp025967z
  5. Zvezdin A.K., Krotov S.S., Kadomtseva A.M., Vorob’ev G.P., Popov Y.F., Pyatakov A.P., Popova E.A. Magnetoelectric Effects in Gadolinium Iron Borate GdFe3(BO3)4 // J. Exp. Theor. Phys. Lett. 2005. V. 81. № 6. P. 272–276. https://doi.org/10.1134/1.1931014
  6. Hölsä J., Leskelä M. Fluorescence Spectrum, Energy Level Scheme and Crystal Field Analysis of Europium(+III) Doped Lanthanum Magnesium Borate LaMgB5O10:Eu3+ // Mol. Phys. 1985. V. 54. № 3. P. 657–667. https://doi.org/10.1080/00268978500100511
  7. Lokeswara Reddy G.V., Rama Moorthy L., Packiyaraj P., Jamalaiah B.C. Optical Characterization of YAl3(BO3)4:Dy3+–Tm3+ Phosphors under Near UV Excitation // Opt. Mater. 2013. V. 35. № 12. P. 2138–2145. https://doi.org/10.1016/j.optmat.2013.05.038
  8. Dubey V., Kaur J., Agrawal S., Suryanarayana N.S., Murthy K.V.R. Effect of Eu3+ Concentration on Photoluminescence and Thermoluminescence Behavior of YBO3:Eu3+ Phosphor // Superlattices Microstruct. 2014. V. 67. P. 156–171. https://doi.org/10.1016/j.spmi.2013.12.026
  9. Шмурак С.З., Кедров В.В., Киселев А.П., Фурсова Т.Н., Зверькова И.И. Спектральные характеристики и перенос энергии Ce3+ → Tb3+ → Eu3+ в соединении LuBO3(Ce,Tb,Eu) // Физика твердого тела. 2016. Т. 58. № 3. С. 564–576.
  10. Solarz P., Beregi E., Lisiecki R., Lengyel K., Kovács L., Ryba-Romanowski W. VIS-VUV Spectroscopy of Heavily Tb and Eu Doped Gadolinium Aluminum Borate (GAB) Crystal // J. Lumin. 2023. V. 257. P. 119717. https://doi.org/10.1016/j.jlumin.2023.119717
  11. Fouassier C., Saubat B., Hagenmuller P. Self-Quenching of Eu3+ and Tb3+ Luminescencein LaMgB5O10: A Host Structure Allowingessentially One-Dimensional Interactions // J. Lumin. 1981. V. 23. № 3–4. P. 405–412. https://doi.org/10.1016/0022-2313(81)90143-5
  12. Saubat B., Fouassier C., Hagenmuller P. Luminescent Efficiency of Eu3+ and Tb3+ in LaMgB5O10-Type Borates Under Excitation from 100 to 400 nm // Mater. Res. Bull. 1981. V. 16. № 2. P. 193–198. https://doi.org/10.1016/0025-5408(81)90081-7
  13. Dorenbos P. 5d-Level Energies of Ce3+ and the Crystalline Environment. III. Oxides Containing Ionic Complexes // Phys. Rev. B: Condens. Matter. 2001. V. 64. № 12–15. https://doi.org/10.1103/PhysRevB.64.125117
  14. Hölsä J., Leskelä M. Fluorescence Spectrum, Energy Level Scheme and Crystal Field Analysis of Europium(III) Doped Lanthanum Magnesium Borate LaMgB5O10:Eu3+ // Mol. Phys. 1985. V. 54. № 3. P. 657–667.
  15. Knitel M.J., Dorenbos P., Eijk C.W.E., Plasteig B., Viana B., Kahn-Harari A., Vivien D. Photoluminescence, and Scintillation/Thermoluminescence Yields of Several Ce3+ and Eu2+ Activated Borates // Nucl. Instrum. Methods Phys. Res., Sect. A. 2000. V. 443. № 2–3. P. 364–374.
  16. Lin C.K., Yu M., Pang M.L., Lin J. Photoluminescent Properties of Sol-Gel Derived (La, Gd)MgB5O10:Ce3+/Tb3+ Nanocrystalline Thin Films // Opt. Mater. 2006. V. 28. № 8–9. P. 913–918. https://doi.org/10.1016/j.optmat.2005.04.009
  17. Jouhari N., Parent C., Le Flem G. Photoluminescence of Ce3+, Tb3+, and Mn2+ in Glasses of Base Composition LaMgB5O10 // J. Solid State Chem. 1996. V. 123. № 2. P. 398–407. https://doi.org/10.1006/jssc.1996.0195
  18. Saubat B., Vlasse M., Fouassier C. Synthesis and Structural Study of the New Rare Earth Magnesium Borates LnMgB5O10 (Ln = La, …, Er) // J. Solid State Chem. 1980. V. 34. № 3. P. 271–277. https://doi.org/10.1016/0022-4596(80)90425-9
  19. Leonyuk N.I., Leonyuk L.I. Growth and Characterization of RM3(BO3)4 Crystals // Prog. Cryst. Growth Charact. Mater. 1995. V. 31. № 3–4. P. 179–278. https://doi.org/10.1016/0960-8974(96)83730-2
  20. Мальцев В.В., Волкова Е.А., Митина Д.Д., Леонюк Н.И., Козлов А.Б., Шестаков А.В. Выращивание и теплофизические свойства кристаллов RAl3(BO3)4 (R = Y, Nd, Gd, Lu) и RMgB5O10 (R = Y, La, Gd) // Неорган. материалы. 2020. Т. 56. № 6. С. 645–658. https://doi.org/10.31857/S0002337X20060081
  21. Митина Д.Д., Мальцев В.В., Леонюк Н.И., Горбаченя К.Н., Дейнека Р.В., Кисель В.Э., Ясюкевич А.С., Кулешов Н.В. Выращивание и характеризация кристаллов RMgB5O10 (R = Y, La, Gd) // Неорган. материалы. 2020. Т. 56. № 2. С. 221–232. https://doi.org/10.31857/S0002337X2002013X
  22. Inorganic Crystal Structure Data Base – ICSD; Fachinformationzentrum (FIZ) Karlsruhe: Karlsruhe, Germany, 2021.
  23. Corbel G., Leblanc M., Antic-Fidancev E., Lemaître-Blaise M., Krupa J. Luminescence Analysis and Subsequent Revision of the Crystal Structure of Triclinic L‑E-uBO3 // J. Alloys Compd. 1999. V. 287. № 1–2. P. 71–78. https://doi.org/10.1016/s0925-8388(99)00023-7
  24. Judd B.R. Hypersensitive Transitions in Rare-Earth Ions // J. Chem. Phys. 1966. V. 44. P. 839. https://doi.org/10.1063/1.1726774
  25. Deyneko D.V., Morozov V.A., Vasin A.A., Aksenov S.M., Dikhtyar Y.Y., Stefanovich S.Y., Lazoryak B.I. The Crystal Site Engineering and Turning of Cross-Relaxation in Green-Emitting β-Ca3(PO4)2-Related Phosphors // J. Lumin. 2020. V. 223. P. 117196 https://doi.org/10.1016/j.jlumin.2020.117196

Supplementary files


Copyright (c) 2023 Д.Д. Митина, В.В. Мальцев, Д.В. Дейнеко, Е.А. Волкова, Е.В. Копорулина, Н.Н. Кузьмин, В.Л. Косоруков, А.И. Жиляева, Д.А. Напрасников

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».