АКУСТИЧЕСКАЯ ЭМИССИЯ, СОПРОВОЖДАЮЩАЯ ПОДГОТОВКУ ДИНАМИЧЕСКОГО ПРОСКАЛЬЗЫВАНИЯ ПО МОДЕЛЬНОМУ ГЕТЕРОГЕННОМУ РАЗЛОМУ МЕТРОВОГО МАСШТАБА

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Закономерности распределения участков тектонических разломов с разными фрикционными свойствами в значительной степени контролируют динамику их скольжения. Невозможность прямого изучения структуры разломных зон на сейсмогенных глубинах делает особенно актуальным разработку методов диагностики, позволяющих получать информацию о структурным особенностях областей формирования очагов землетрясений и тем самым прогнозировать динамику скольжения. В настоящей работе представлены результаты лабораторных экспериментов, в которых исследовались закономерности излучения упругих колебаний в процессе эволюции напряженно-деформированного состояния модельного разлома, имеющего пространственно-неоднородную структуру плоскости скольжения. Модельный разлом представлял собой нагруженный контакт блоков диабаза и имел размер 750 × 120 мм2. На интерфейсе разлома были сформированы две зоны круглой формы диаметром по 100 мм, которые обладают повышенной прочностью со свойством скоростного разупрочнения, так называемые асперити. В ходе экспериментов изменялось относительное расположение таких зон. Процесс формирования динамического проскальзывания, обусловленного разрушением асперити, сопровождался излучением большого количества акустических импульсов, регистрируемых в полосе частот 20-80 кГц. В ходе экспериментов данные о пространственном распределении импульсов позволяют выявить две отдельные контактные области только при расстояниях между этими участками более 20 мм. При этом наблюдаются различия в статистике импульсов, излученных на различных асперити.

Об авторах

К. Г. Морозова

Институт динамики геосфер имени академика М. А. Садовского РАН

Email: morozova.kg@idg.ras.ru
Москва, Россия

Д. В. Павлов

Институт динамики геосфер имени академика М. А. Садовского РАН

Москва, Россия

А. А. Остапчук

Институт динамики геосфер имени академика М. А. Садовского РАН

Москва, Россия

Список литературы

  1. Беседина А.Н., Новикова Е.В., Белоклоков П.В. и др. Особенности зон локализации сильнейших землетрясений Курило-Камчатской дуги // Физика Земли. 2025. № 2. С. 19-35.
  2. Гридин Г.А., Кочарян Г.Г., Морозова К.Г., Новикова Е.В., Остапчук А.А., Павлов Д.В. Развитие процесса скольжения по гетерогенному разлому. Крупномасштабный лабораторный эксперимент // Физика Земли. 2023. № 3. С. 139-147.
  3. Кочарян Г.Г. Геомеханика разломов. М.: ГЕОС. 2016. 424 с.
  4. Кочарян Г.Г. Возникновение и развитие процессов скольжения в зонах континентальных разломов под действием природных и техногенных факторов. Обзор современного состояния вопроса // Физика Земли. 2021. № 4. С. 3-41. https://doi.org/10.31857/S0002333721040062
  5. Кочарян Г.Г., Остапчук А.А., Павлов Д.В., Гридин Г.А., Морозова К.Г., Hongwen J., Пантелеев И.А. Лабораторные исследования закономерностей фрикционного взаимодействия блоков скальной породы метрового масштаба. Методика и первые результаты // Физика Земли. 2022. № 6. С. 162-174.
  6. Соболев Г.А. Физические основы прогноза землетрясений. М.: Наука. 1993. 314 с.
  7. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука. 2003. 270 с.
  8. Allen R. Automatic earthquake recognition and timing from single traces // Bull. Seismol. Soc. Am. 1978. V. 68. P. 1521- 1532.
  9. Buijze L., Guo Y., Niemeijer A.R., Ma S., Spiers C.J. Effects of heterogeneous gouge segments on the slip behavior of experimental faults at dm scale // Earth Planet. Sci. Lett. 2021. https://doi.org/10.1016/j.epsl.2020.116652.
  10. Collettini C., Tesei T., Scuderi M.M., Carpenter B.M., Viti C. Beyond Byerlee Friction, Weak Faults and Implications for Slip Behavior // Earth Planet. Sci. Lett. 2019. V. 519. P. 245-263. https://doi.org/10.1016/j.epsl.2019.05.011
  11. Corbi F., Funiciello F., Brizzi S., Lallemand S., Rosenau M. Control of asperities size and spacing on seismic behavior of subduction mega thrusts // Geophys. Res. Lett. 2017.V. 44. P. 8227-8235. https://doi.org/10.1002/2017GL074182
  12. Dublanchet P., Bernard P., Favreau P.Interactions and triggering in a 3-D rate-and-state asperity model // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 2225-2245, https://doi.org/10.1002/jgrb.50187
  13. Fagereng Å., Beall A. Is complex fault zone behaviour a reflection of rheological heterogeneity? // Phil.Trans.R.Soc. 2021. A 379: 20190421. https://doi.org/10.1098/rsta.2019.0421
  14. Frank W., Shapiro N. M., Husker A., Kostoglodov V., Gusev A.A., Campillo M. The evolving interaction of low-frequency earthquakes during transient slip // Science Advances. 2016. V. 2. № 4. P. e1501616. https://doi.org/10.1126/sciadv.1501616
  15. Gulia L., Wiemer S. Real-time discrimination of earthquake foreshocks and aftershocks // Nature. 2019. V. 574. P. 193-199. https://doi.org/10.1038/s41586-019-1606-4
  16. Gutenberg, B. & Richter, C. F. Frequency of earthquakes in California // Bull. Seismol. Soc. Am. 1944. V. 34. P.185-188.
  17. Kocharyan G.G., Ostapchuk A.A., Pavlov D.V. Fault Sliding Modes - Governing, Evolution and Transformation. Multiscale Biomechanics and Tribology of Inorganic and Organic Systems / Ostermeyer G.P., Popov V.L., Shilko E.V., Vasiljeva O.S. (eds.). Cham.: Springer. 2021. P. 323-358. https://doi.org/10.1007/978-3-030-60124-9_15
  18. OstapchukA, Polyatykin V, Popov M, Kocharyan G. Seismogenic patches in a tectonic fault interface // Front. Earth Sci. 2022. V. 10. P. 904814. https://doi.org/10.3389/feart.2022.904814
  19. Peng Z., Gomberg J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena // Nature Geoscience. 2010. V. 3. № 9. P. 599-607. https://doi.org/10.1038/ngeo940
  20. Turcotte D.L. Self-organized criticality // Rep. Prog. Phys. 1999. V. 62. P. 1377. https://doi.org/10.1088/0034-4885/62/10/201
  21. Veedu D. M., Barbor S. The Parkfield tremors reveal slow and fast ruptures on the same asperity // Nature. 2016. V. 532. P. 361-365. https://doi.org/10.1038/nature17190
  22. Vorobieva I., Shebalin P., Narteau C. Break of slope in earthquake size distribution and creep rate along the San Andreas Fault system // Geophysical Research Letters. 2016. V. 43. P. 6869-6875. https://doi.org/10.1002/2016GL069636
  23. Wyss M., Sobolev G., Clippard J.D. Seismic quiescence precursors to two M7 earthquakes on Sakhalin Island, measured by two methods // Earth Planet Sp. 2004. V. 56 Pp. 725-740, 554, 116652.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».