Upper Bounds for the Approximation of Certain Classes of Functions of a Complex Variable by Fourier Series in the Space L2 and n-Widths
- 作者: Shabozov M.S.1, Saidusaynov M.S.2
-
隶属关系:
- Dzhuraev Institute of Mathematics
- Tajik National University
- 期: 卷 103, 编号 3-4 (2018)
- 页面: 656-668
- 栏目: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/150822
- DOI: https://doi.org/10.1134/S0001434618030343
- ID: 150822
如何引用文章
详细
We consider the problem of the mean-square approximation of complex functions regular in a domain D ⊂ C by Fourier serieswith respect to an orthogonal (inD) systemof functions {ϕk(z)}, k = 0, 1, 2,.... For the case inwhich D = {z ∈ C: |z| < 1}, we obtain sharp estimates for the rate of convergence of the Fourier series in the orthogonal system {zk}, k = 0, 1, 2,..., for classes of functions defined by a special mth-order modulus of continuity. Exact values of the series of n-widths for these classes of functions are calculated.
作者简介
M. Shabozov
Dzhuraev Institute of Mathematics
编辑信件的主要联系方式.
Email: shabozov@mail.ru
塔吉克斯坦, Dushanbe
M. Saidusaynov
Tajik National University
Email: shabozov@mail.ru
塔吉克斯坦, Dushanbe
补充文件
