Asymptotic equalities for best approximations for classes of infinitely differentiable functions defined by the modulus of continuity
- 作者: Serdyuk A.S.1, Sokolenko I.V.1
-
隶属关系:
- Institute of Mathematics
- 期: 卷 99, 编号 5-6 (2016)
- 页面: 901-915
- 栏目: Short Communications
- URL: https://ogarev-online.ru/0001-4346/article/view/149477
- DOI: https://doi.org/10.1134/S0001434616050291
- ID: 149477
如何引用文章
详细
We obtain asymptotic estimates for best approximations by trigonometric polynomials in the metric of the space C(Lp) for classes of periodic functions expressible as convolutions of kernels Ψβ with Fourier coefficients decreasing to zero faster than any power sequence, and with functions ϕ ∈ C (ϕ ∈ Lp) whose moduli of continuity do not exceed the given majorant of ω(t). It is proved that, in the spaces C and L1, for convex moduli of continuity ω(t), the obtained estimates are asymptotically sharp.
作者简介
A. Serdyuk
Institute of Mathematics
编辑信件的主要联系方式.
Email: serdyuk@imath.kiev.ua
乌克兰, Kiev
I. Sokolenko
Institute of Mathematics
Email: serdyuk@imath.kiev.ua
乌克兰, Kiev
补充文件
