Estimate of the ratio of two entire functions whose zeros coincide in the disk
- 作者: Geynts V.L.1, Shkalikov A.A.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 99, 编号 5-6 (2016)
- 页面: 870-878
- 栏目: Short Communications
- URL: https://ogarev-online.ru/0001-4346/article/view/149454
- DOI: https://doi.org/10.1134/S0001434616050254
- ID: 149454
如何引用文章
详细
We study entire functions of finite growth order that admit the representation ψ(z) = 1 + O(|z|−μ), μ > 0, on a ray in the complex plane. We obtain the following result: if the zeros of two functions ψ1, ψ2 of such class coincide in the disk of radius R centered at zero, then, for any arbitrarily small δ ∈ (0, 1), ε > 0, the ratio of these functions in the disk of radius R1−δ admits the estimate |ψ1(z)/ψ2(z) − 1| ≤ εR−μ(1−δ) if R ≥ R0(ε, δ). The obtained results are important for stability analysis in the problem of the recovery of the potential in the Schrödinger equation on the semiaxis from the resonances of the operator.
作者简介
V. Geynts
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: valgeynts@gmail.com
俄罗斯联邦, Moscow
A. Shkalikov
Lomonosov Moscow State University
Email: valgeynts@gmail.com
俄罗斯联邦, Moscow
补充文件
