Estimate of the ratio of two entire functions whose zeros coincide in the disk


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study entire functions of finite growth order that admit the representation ψ(z) = 1 + O(|z|−μ), μ > 0, on a ray in the complex plane. We obtain the following result: if the zeros of two functions ψ1, ψ2 of such class coincide in the disk of radius R centered at zero, then, for any arbitrarily small δ ∈ (0, 1), ε > 0, the ratio of these functions in the disk of radius R1−δ admits the estimate |ψ1(z)/ψ2(z) − 1| ≤ εR−μ(1−δ) if RR0(ε, δ). The obtained results are important for stability analysis in the problem of the recovery of the potential in the Schrödinger equation on the semiaxis from the resonances of the operator.

作者简介

V. Geynts

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: valgeynts@gmail.com
俄罗斯联邦, Moscow

A. Shkalikov

Lomonosov Moscow State University

Email: valgeynts@gmail.com
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016