On the Unique Solvability of the Problem of the Flow of an Aqueous Solution of Polymers near a Critical Point
- Autores: Petrova A.G.1
-
Afiliações:
- Altai State University
- Edição: Volume 106, Nº 5-6 (2019)
- Páginas: 784-793
- Seção: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151860
- DOI: https://doi.org/10.1134/S0001434619110117
- ID: 151860
Citar
Resumo
We consider the boundary-value problem in a semibounded interval for a fourth-order equation with “double degeneracy”: the small parameter in the equation multiplies the product of the unknown function vanishing on the boundary and its highest derivative. Such a problem arises in the description of the motion of weak solutions of polymers near a critical point. For the zero value of the parameter, the solution is the classical Hiemenz solution. We prove the unique solvability of the problem for nonnegative values of the parameter not exceeding 1.
Sobre autores
A. Petrova
Altai State University
Autor responsável pela correspondência
Email: annapetrova07@mail.ru
Rússia, Barnaul, 656049
Arquivos suplementares
