On the Recovery of an Integer Vector from Linear Measurements


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let 1 ≤ 2lm < d. A vector x ∈ ℤd is said to be l-sparse if it has at most l nonzero coordinates. Let an m × d matrix A be given. The problem of the recovery of an l-sparse vector x ∈ Zd from the vector y = Ax ∈ Rm is considered. In the case m = 2l, we obtain necessary conditions and sufficient conditions on the numbers m, d, and k ensuring the existence of an integer matrix A all of whose elements do not exceed k in absolute value which makes it possible to reconstruct l-sparse vectors in ℤd. For a fixed m, these conditions on d differ only by a logarithmic factor depending on k.

Sobre autores

S. Konyagin

Steklov Mathematical Institute of Russian Academy of Sciences

Autor responsável pela correspondência
Email: konyagin23@gmail.com
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018