On the Recovery of an Integer Vector from Linear Measurements
- Autores: Konyagin S.V.1
-
Afiliações:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Edição: Volume 104, Nº 5-6 (2018)
- Páginas: 859-865
- Seção: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/150458
- DOI: https://doi.org/10.1134/S0001434618110305
- ID: 150458
Citar
Resumo
Let 1 ≤ 2l ≤ m < d. A vector x ∈ ℤd is said to be l-sparse if it has at most l nonzero coordinates. Let an m × d matrix A be given. The problem of the recovery of an l-sparse vector x ∈ Zd from the vector y = Ax ∈ Rm is considered. In the case m = 2l, we obtain necessary conditions and sufficient conditions on the numbers m, d, and k ensuring the existence of an integer matrix A all of whose elements do not exceed k in absolute value which makes it possible to reconstruct l-sparse vectors in ℤd. For a fixed m, these conditions on d differ only by a logarithmic factor depending on k.
Palavras-chave
Sobre autores
S. Konyagin
Steklov Mathematical Institute of Russian Academy of Sciences
Autor responsável pela correspondência
Email: konyagin23@gmail.com
Rússia, Moscow, 119991
Arquivos suplementares
