On the Parametrization of an Algebraic Curve
- Авторлар: Bryuno A.D.1
-
Мекемелер:
- Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
- Шығарылым: Том 106, № 5-6 (2019)
- Беттер: 885-893
- Бөлім: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151892
- DOI: https://doi.org/10.1134/S0001434619110233
- ID: 151892
Дәйексөз келтіру
Аннотация
At present, a plane algebraic curve can be parametrized in the following two cases: if its genus is equal to 0 or 1 and if it has a large group of birational automorphisms. Here we propose a new polyhedron method (involving a polyhedron called a Hadamard polyhedron by the author), which allows us to divide the space ℝ2 or ℂ2 into pieces in each of which the polynomial specifying the curve is sufficiently well approximated by its truncated polynomial, which often defines the parametrized curve. This approximate parametrization in a piece can be refined by means of the Newton method. Thus, an arbitrarily exact piecewise parametrization of the original curve can be obtained.
Негізгі сөздер
Авторлар туралы
A. Bryuno
Keldysh Institute of Applied Mathematics of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: abruno@keldysh.ru
Ресей, Moscow, 125047
Қосымша файлдар
