The Cauchy Problem for the Radiation Transfer Equation with Fresnel and Lambert Matching Conditions
- Авторлар: Prokhorov I.V.1,2
-
Мекемелер:
- Institute for Applied Mathematics, Far-Eastern Branch
- Far-Eastern Federal University
- Шығарылым: Том 105, № 1-2 (2019)
- Беттер: 80-90
- Бөлім: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151511
- DOI: https://doi.org/10.1134/S0001434619010097
- ID: 151511
Дәйексөз келтіру
Аннотация
The well-posedness of the initial boundary-value problem for the nonstationary radiation transfer equation in a three-dimensional bounded domain with generalized matching conditions at the interfaces is studied. The case of the matching operator expressed as a linear combination of operators of Fresnel and Lambert types is considered. The existence of a unique strongly continuous semigroup of solving operators of the Cauchy problem is proved, and stabilization conditions for the nonstationary solution are obtained.
Авторлар туралы
I. Prokhorov
Institute for Applied Mathematics, Far-Eastern Branch; Far-Eastern Federal University
Хат алмасуға жауапты Автор.
Email: prokhorov@iam.dvo.ru
Ресей, Vladivostok, 690041; Vladivostok, 690950
Қосымша файлдар
