On a Family of Residually Finite Groups
- Авторлар: Moldavanskii D.I.1
-
Мекемелер:
- Ivanovo State University
- Шығарылым: Том 105, № 1-2 (2019)
- Беттер: 56-63
- Бөлім: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151504
- DOI: https://doi.org/10.1134/S0001434619010061
- ID: 151504
Дәйексөз келтіру
Аннотация
It is known that there exists a finitely generated residually finite group (for short, a residually F-group) the extension by which of some finite group is not a residually F-group. In the paper, it is shown that, nevertheless, every extension of a finite group by a finitely generated residually F-group is a Hopf group, and every extension of a center-free finite group by a finitely generated residually F-group is a residually F-group. If a finitely generated residually F-group G is such that every extension of an arbitrary finite group by G is a residually F-group, then a descending HNN-extension of the group G also has the same property, provided that it is a residually F-group.
Негізгі сөздер
Авторлар туралы
D. Moldavanskii
Ivanovo State University
Хат алмасуға жауапты Автор.
Email: moldav@mail.ru
Ресей, Ivanovo, 153025
Қосымша файлдар
