On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates
- Авторлар: Dymchenko Y.V.1, Shlyk V.A.2
-
Мекемелер:
- Far-Eastern Federal University
- Vladivostok Branch of Russian Customs Academy
- Шығарылым: Том 103, № 5-6 (2018)
- Беттер: 901-910
- Бөлім: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/150956
- DOI: https://doi.org/10.1134/S0001434618050267
- ID: 150956
Дәйексөз келтіру
Аннотация
It is proved that, in Euclidean n-space, n ≥ 2, the weighted capacity (with Muckenhoupt weight) of a condenser with a finite number of plates is equal to the weighted modulus of the corresponding configuration of finitely many families of curves. For n = 2, in the conformal case, this equality solves a problem posed by Dubinin.
Авторлар туралы
Yu. Dymchenko
Far-Eastern Federal University
Хат алмасуға жауапты Автор.
Email: dymch@mail.ru
Ресей, Vladivostok
V. Shlyk
Vladivostok Branch of Russian Customs Academy
Email: dymch@mail.ru
Ресей, Vladivostok
Қосымша файлдар
