Homogeneous Wiener—Hopf Double Integral Equation with Symmetric Kernel in the Conservative Case


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We establish nontrivial solvability conditions for the homogeneous double integral equation

\(S(x, y)=\int_{0}^{\infty} \int_{0}^{\infty} K\left(x-x^{\prime}, y-y^{\prime}\right) S\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}, \quad(x, y) \in \mathbb{R}_{+} \times \mathbb{R}_{+},\)
where ℝ+ ≡ [0, +∞), under the assumption that the given function K satisfies the conservativity conditions
\(0 \leq K \in L_{1}, \quad \iint_{\mathbb{R}^{2}} K(x, y) \ d x\ d y=1\)
and some additional conditions on its first and second moments.

About the authors

L. G. Arabadzhyan

Institute of Mathematics; Khachatur Abovian Armenian State Teachers’ Training University

Author for correspondence.
Email: arabajyan@mail.ru
Armenia, Yerevan, 375019; Yerevan, 375010

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.