Regular Ordinary Differential Operators with Involution


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The main results of the paper are related to the study of differential operators of the form

\(Ly = {y^{\left( n \right)}}\left( { - x} \right) + \sum\limits_{k = 1}^n {pk\left( x \right){y^{\left( {n - k} \right)}}\left( { - x} \right) + } \sum\limits_{k = 1}^n {{q_k}\left( x \right){y^{\left( {n - k} \right)}}} \left( x \right),\,x \in \left[ { - 1,1} \right],\)
with boundary conditions of general form concentrated at the endpoints of a closed interval. Two equivalent definitions of the regularity of boundary conditions for the operator L are given, and a theorem on the unconditional basis property with brackets of the generalized eigenfunctions of the operator L in the case of regular boundary conditions is proved.

Sobre autores

V. Vladykina

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: vladykina@cosmos.msu.ru
Rússia, Moscow, 119991

A. Shkalikov

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: shkalikov@mi-ras.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019