On the Trace-Class Property of Hankel Operators Arising in the Theory of the Korteweg–de Vries Equation
- Authors: Grudsky S.M.1, Rybkin A.V.2
-
Affiliations:
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
- University of Alaska
- Issue: Vol 104, No 3-4 (2018)
- Pages: 377-394
- Section: Article
- URL: https://ogarev-online.ru/0001-4346/article/view/151329
- DOI: https://doi.org/10.1134/S0001434618090067
- ID: 151329
Cite item
Abstract
The trace-class property of Hankel operators (and their derivatives with respect to the parameter) with strongly oscillating symbol is studied. The approach used is based on Peller’s criterion for the trace-class property of Hankel operators and on the precise analysis of the arising triple integral using the saddle-point method. Apparently, the obtained results are optimal. They are used to study the Cauchy problem for the Korteweg–de Vries equation. Namely, a connection between the smoothness of the solution and the rate of decrease of the initial data at positive infinity is established.
About the authors
S. M. Grudsky
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico
Author for correspondence.
Email: grudsky@math.cinvestav.mx
Mexico, Nacional, 07360
A. V. Rybkin
University of Alaska
Email: grudsky@math.cinvestav.mx
United States, Fairbanks, 757500
Supplementary files
